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bstract

The present work deals with the proposition and evaluation of easy to implement control structures for a hydrogenation industrial size reactor.
he used mathematical model formulation is a detailed deterministic and previously validated one, which was made focusing on the hydrogenation

eaction of o-cresol to obtain the 2-methyl-cyclohexanol, in the presence of a Ni/SiO2 catalyst. A simplified model, generated through factorial
esign statistical tool, is also used for stationary states predictions, providing very quick solution, suitable for on-line applications. Five different
ontrol structures, based on the feedback and feedforward classic structures and on combinations of them, are evaluated both concerning to the
bility of the controller to maintain (regulatory control) or to change the controlled variable to the new set-point (servo control) in a reasonable

ction time. The study shows that, in the analyzed operation range, the combined structure is the best one to be used for this reactor, both for the
ervo and regulatory control problems. The calculation of control actions is significantly reduced by the use of simplified models. However, since
n offset is present in the regulatory problem when the simplified model is used, this model is not suggested to be used in the regulatory problem.

2008 Elsevier B.V. All rights reserved.
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. Introduction

Three-phase reactors can be found in several important
pplications, including hydrogenation and oxidation processes.
ydrogenation reactions are industrially widely applied, usu-

lly for commodities production, with large production scale.
t consists of a highly non-linear process, multivariable, with
xothermic reactions taking place. The high performance oper-
tion of large-scale industrial units is one of the most difficult
nd dangerous in chemical industries, especially when reactors
re considered. A competitive advantage in such kind of systems
s the operation at an optimal level of performance, even at very
igh throughputs. In the last decade, model predictive control
MPC) algorithms have been widely studied and applied in many

hemical processes. Unfortunately, reports on control of three-
hase catalytic reactors are relatively scarce when compared to
ther types of catalytic reactors [1]. High conversion and selec-
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sed controller

ivity are usually required and more recently, after the 1990s,
full conversion of the limiting reactant (for instance, higher

lcohols) are demanded for environmental sake. At this point it
s interesting to draw attention to some typical aspects of such
eactors. They are usually very large units (above 100 tonnes/h
ith length in the range of several dozen of meters) with a quite

omplex behavior due to phase change and strong interactions
mong heat and mass transfer, involving the gas, liquid and solid
hases.

An overview of commercially available MPC technologies
LQG, linear quadratic Gaussian; IDCOM, model predictive
euristic; DMC, dynamic matrix control; QDMC controllers,
onstrained dynamic matrix control) is given by Qin and Badg-
ell [2]. This did not change in the last one to two years, if

n overview of the industrial implementation is made [3]. The
istory of evolution of unconstrained to constrained algorithms
nd some applications of such algorithms are reported by Qin

nd Badgwell. A lot of work in literature that applies MPC in a
ariety of chemical processes can be found. The state-of-art of
ontroller performance monitoring, including both feedforward
nd feedback control, has been reviewed by Hoo et al. [4]. These

mailto:delba@lopca.feq.unicamp.br
dx.doi.org/10.1016/j.cej.2007.12.026
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Nomenclature

agl and als gas–liquid and liquid–solid interfacial areas,
respectively (m−1)

A* solubility of the component A (kmol/m3)
A0 pre-exponential factor (kmol/(kg catalyst s))
A1 pre-exponential factor (m3/mol)
A2 pre-exponential factor (m3/mol)
Ag A component concentration in the gas phase

(kmol/m3)
Al A component concentration in the liquid phase

(kmol/m3)
Agfo A component concentration in the gas phase in the

reactor feed (kmol/m3)
Alfo A component concentration in the liquid phase in

the reactor feed (kmol/m3)
Bl B component concentration in the liquid phase

(kmol/m3)
Blfo B component concentration in the liquid phase in

the reactor feed (kmol/m3)
CA concentration of the component A (kmol/m3)
CB concentration of the component B (kmol/m3)
Cp heat capacity (kJ/(kg K))
De effective diffusivity (m2/s)
Dt reactor diameter (m)
E0, E1 and E2 activation energies (J/mol)
Fi molar flow of ith component (kmol/s)
h convective heat transfer coefficient (kJ/(m2 s K))
�Hr heat of reaction (kJ/(k mol))
k kinetic constant (kmol/(kg catalyst s))
Kgl and Kls mass-transfer coefficients between the

gas–liquid and liquid–solid phases, respectively
(cm/s)

KA and KB constants of adsorption to components A and
B, respectively (m3/kmol)

L reactor length (m)
rp dimensionless particle radial position
R universal gas constant (J/(mol K))
Rp particle radius (m)
RW rate of hydrogenation of o-cresol

(kmol/(kg catalyst s))
T temperature (K)
Tfo temperature in the feeding (K)
Tr temperature of the coolant fluid (K)
t time (s)
u linear velocity (m/s)
U global heat-transfer coefficient (kJ/(m2 s K))
W catalyst concentration ((kg catalyst)/m3)
z dimensionless reactor axial position

Greek letters
εg gas phase hold-up
εl liquid phase hold-up
εs solid porosity
λ thermal conductivity (kJ/(m s K))
ν stoichiometric coefficient

ρ density (kg/m3)
τ tortuosity

Subscripts
A component A
B component B
g gas phase
fo feeding
l liquid phase
i initial value (reactor inlet)
p particle
s solid
r coolant fluid

Superscript
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wo control strategies were demonstrated both in a case study of
n ideal continuous-stirred tank reactor (CSTR) and in an indus-
rial polymer reactor. Additionally, it was shown that minimum
ariance control is usually undesirable because of issues such
s model/plant mismatch. Thornhill et al. [5] also worked with
CSTR, but with a pilot scale one. They examined factors that

nfluence the minimum variance performance measure of a SISO
ontrol loop and discussed the reasons why performance during
et-point changes differs from the regulatory performance dur-
ng operation at a constant set-point. The results demonstrated
ow regulatory performance is influenced by the nature of the
isturbances, and that correlations of signals within a control
oop can indicate whether the disturbances are random or deter-

inistic. For controller performance purposes, the correlation
oefficients between the manipulated variable (MV) and move-
ents of MV (i.e. the increments in the manipulated variable)

hould be below 0.41 to ensure that MV movements are not too
ggressive. Pannocchia [6] developed a novel robust model pre-
ictive control (RMPC) algorithm for the feedback temperature
ontrol of a CSTR. Offset removal in the controlled variables
or set-points changes was achieved.

Although the possible advantages of advanced nonlinear
odel-based control methods over classical methods, Utz et

l. [7] accredit the relatively low number of real industrial
pplications of such advanced control to the time-consuming
ptimization as well as the difficulty to model suitably nonlin-
ar processes. In order to contribute with industrial applications,
he authors presented a comparative evaluation of nonlinear

odel predictive control (NMPC) and a two-degree-of-freedom
ontrol-scheme with flatness-based feedforward control design
nd decentralized PI-controllers (FB-2DOF). The studies are
arried with a set-point transition using a class of chemical
STR that functions as a benchmark process for nonlinear con-

rol, to know, the Klatt–Engell reactor. Based on an analysis of

imulation scenarios, the controllers are compared with respect
o controller performance, robustness criteria, and implemen-
ation issues. NMPC exhibits performance advantages when
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t comes to time-efficient set-point transitions when there is
o plant-model mismatch, which is mostly due to the higher
umber of design parameters of this controller. In FB-2DOF
ontrol, the relatively few design parameters are a limiting
actor, especially when it comes to tight performance require-
ents or when constraints have to be considered. NMPC

llows direct incorporation of process models and constraints,
ut, it employs computationally expensive online optimization.
obustness properties of the two controllers are found to be
uite comparable for the chosen and investigated transition time.
MPC is relatively simple to be implemented. For FB-2DOF,

he software implementation itself is very simple. However,
he control design can require high engineering efforts when
arametrising the system by the flat output or guaranteeing
dherence of the trajectories to constraints. Wang el al. [8] pro-
osed the original open loop unstable plants to be first stabilized
sing a state feedback strategy followed by the local lineariza-
ion within a regime classified by a gap metric measure. In order
o make a smooth transition between regimes and to make the
ontrol free of offset, a Kalman filter is implemented. The advan-
ages of the NMPC proposed approach were demonstrated in
wo case studies: robust control of a CSTR and of a Zymomonas
obilis fermentor.
Thornhill et al. [9] applied the principles of the minimum

ariance controller (MVC) for the controller performance eval-
ation, as introduced by Bezergianni and Georgakis [10] and
xtended by the same authors in 2003 [11], when the calcu-
ation of the relative variance index was suggested. Thornhill
t al. [9] reported 12 single-input-single-output (SISO) MVC
ontrollers in refinery plant with positive results. The calcula-
ion of the MVC assumes that the process can be represented
dequately by a linear time-invariant (LTI) transfer function
odel with additive disturbances. The control loop performance

ssessment (CLPA) algorithm has several parameters (number
f terms in the model, sampling interval, data ensemble length
nd the prediction horizon) that have to be adjusted correctly to
ive the best results. The aim of the paper was to recommend
efault numerical settings for these parameters that are suitable
or most refinery control loops. Procedures were described for
electing these parameters which made it feasible to implement
he algorithm on a refinery-wide scale.

A lot of work is also found in control applications in fluid
atalytic cracking units. A methodology for the evaluation of
trategies control and for the preliminary assessment of con-
rollability of nonlinear systems was proposed by Maya-Yescas
nd Aguilar [12] for chemical reactors (FCC regenerators).
he results obtained when evaluating the control strategies pro-
osed in four different situations were coherent with industrial
ractice and operating experience. Alvarez-Ramirez et al. [13]
resented the design of multivariable feedback control configu-
ations for control of the riser output for FCC units. Numerical
imulations were performed to show the effectiveness of sev-
ral multivariable control configurations under disturbances and

ncertainty parameters. Vieira et al. [14] implemented and evalu-
ted the performance of a neural network-based model predictive
ontrol (MPC) applied to a FCC converter. The studies were
arried out by dynamic simulation, where the simulator out-
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ut signals were disturbed by random noise. To simulate usual
rocedures in the FCC industrial plant, a servo-regulatory con-
rol problem was implemented, as well as a regulatory one.
ccording to the authors, the neural model predictive control

s a powerful alternative tool to bring the process under con-
rol for both servo and regulatory problems. The neural network

PC response showed to be even smoother than that obtained
rom DMC algorithm. The predictions from the neural model
nd from the optimal control calculations could be obtained
n a few seconds when the control horizon was equal to 1 or
.

Alpbaz et al. [15] provide the comparison of DMC and PID
ontrollers applied to a packed distillation column. The reflux
atio was chosen as the manipulated variable to control the over-
ead product temperature. The dynamic behavior of the column
as observed at various step changes in the feed composition.
umerical results obtained from theoretical model are compared
ith experimental data. The performance of these control sys-

ems was tested using the integral square error (ISE) index. The
imulations results showed that the performance of DMC con-
roller for tracking a temperature set-point is better than that of
onventional PID controller.

The control of many chemical processes like tubular reac-
ors, with or without catalytic bed, is complicated by problems
ssociated with the on-line measurements of desired control
bjectives, especially those concerned with concentrations. For
he tubular reactors, the primary control objective is usually the
egulation of the outlet concentration at optimum levels. The
utlet concentration is not easily measured on-line, so it can
e inferred (estimated) from the available temperature measure-
ents.
In the area of tubular reactors, Wu and Chen [16] imple-

ented an analytic optimization algorithm connected to the
easurement-based predictive control framework on an exother-
ic tubular reactor system (PFR). The exit reactor temperature

s used as the controlled variable and the coolant flow rate
nd coolant temperature in the feed are treated as manipu-
ated variables. They proposed two predictive control strategies
enominated nondistributed model predictive control without
ensing state information and with sensing state information
t the prescribed location. The first scheme is a nondistributed
utput feedback controller. It manipulates a distributed reac-
or system using the steady-state optimization approach and an
pen-loop observer while state/input constraints and unknown
nlet disturbances are being considered simultaneously. In this
cheme structure, treated as a feedback-based implementation
ne, there are two models: one steady-state model, used in
ptimization calculations, and a so-called lumped difference
odel, which predicts the output with respect to the input

onstraints. The second scheme, a measurement-based predic-
ive control algorithm controller design, can induce the stable
nd no-offset output regulation at the outlet of the reactor.
esults show that the second scheme presented better track-
ng than the first one, but more-oscillating responses were
etected.

Dechechi et al. [17] developed a novel adaptive control algo-
ithm based on dynamic matrix control (DMC) philosophy with
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daptive features for application in an industrial hydrogena-
ion catalytic multiphase reactor. This process has complex heat
ransfer mechanisms and fast dynamic behavior. The on-line
nternal model adaptation was carried out successfully using
ecursive least square method with an ARMA (autoregressive
oving average)-based model. This algorithm showed a very

ood performance leading the reactor to be operated safely in
arge range of operation conditions. The results also showed
he high efficiency of the developed multivariable controller
hen applied to this industrial process under normal operation.
here were five controlled variables (the most important one
as the temperature along the reactor length) and six manipu-

ated variables (cooling flow rate of each jacketed tubes of the
eactor).

Costa and Maciel Filho [18] evaluated the performance of a
on-linear predictive controller applied to a three-phase catalytic
eactor using a functional link network as internal model. The
xit reactor temperature is controlled and the feed temperature
s the manipulated variable. It was shown that the functional link
tructure represented accurately the dynamic and static behavior
f the process, having, therefore, good performance as internal
odel of the control algorithm. The performance of the non-

inear controller was tested for load disturbances and set-point
hanges with good results.

Rezende et al. [19] investigated the DMC performance on the
eedback control of a multi-phase reactor, evaluating the impact
f controller parameters. These authors proposed and analyzed
simple to use and easy to implement control structure (DMC),
sing SISO control approach in two separate studies, one for the
ontrol of the desired product concentration and the other for
he control of temperature at the reactor exit.

In the present work, the control problem is formulated as
he thermal control of the reactor, controlling concentration in
n indirect way. The emphasis here is given to relative easy
o implement control structures. For the establishment of the
ontrol strategy of the considered hydrogenation reactor, it is
ecessary, besides to define its operational objective and the
anipulated(s) variable(s), to develop a model that predicts the
ain characteristics of the reactor dynamic behavior. Once these

tems are defined, suitable control structures may be proposed.
n the implementation of the control loop, it is necessary to
now the physical and operational limitations of the reactor
anipulated and controlled variables. This appears to be obvi-

us but it rarely is explicitly taken into account in control studies
valuation. Here the difficulties to implement, for instance, a
ontrol scheme which requires a temperature profile establish-
ent along the reactor length, are considered in the control

trategy propositions, because clearly there are physical limi-
ations to be successfully implemented in industrial plants. The
ontrol strategies evaluated in this work are possible and rela-
ively easy to implement with the existing resources in many
ypical industrial plants, especially those in where a regulatory
ontrol layer based on PID controller is available. Most of hydro-

enation plants have this already on due to safety reasons. This
nformation is essential to define a suitable and feasible con-
rol strategy, especially when on-line optimization is required.
n such situations, the optimizer finds out the best operational
ing Journal 141 (2008) 250–263 253

alues for the process variables and these values are used as
ontroller(s) set-point(s).

. Hydrogenation reactor: modeling and characteristics

The system used as study case is a multiphase reactor with
ndustrial size, where the hydrogenation reaction of o-cresol
akes place. This is representative of many industrially important
rocesses, as phenol and vegetable oils hydrogenation reactors,
here very exothermic reactions occur. The deterministic model
ere used takes into account the heterogeneous dynamic behav-
or of the system, and consists of mass and energy balance
quations for the reactants in gas, liquid and at solid phase [20].
he kinetic law considers the hydrogenation reaction of o-cresol

o obtain 2-methyl-cyclo-hexanol, in the presence of the cata-
yst Ni/SiO2 [20]. The utilized scheme to represent the reactor
s shown in Fig. 1.

The hydrogenation of o-cresol to 2-methyl-cyclohexanol on
i/SiO2 can be represented by Eq. (1):

H2(g) + C6H4OHCH3(l) → C6H10OHCH3(l) (1)

(g) + νB(l) → νC(l) (2)

q. (2) is a generic representation of three-phase hydrogenation
eactions. In this study case, A stands for hydrogen, B for o-
resol, C for 2-methyl-cyclohexanol and ν is the stoichiometric
oefficient (equal to 1/3).

Eq. (3) has been obtained for the reaction rate of o-cresol
ydrogenation reaction [21], where Ci is the concentration of
he component i (kmol/m3):

W = k
KAKBCACB

(1 + KACA)(1 + KBCB)
(3)

he kinetic constants are functions of temperature, based on the
rrehnius’ law:

= A exp

(
− E0

)
(4)
Fig. 1. Three-phase reactor.
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B = A2 exp

(
− E2

RT

)
(6)

he kinetic parameters for Eqs. (4)–(6) are: A0 = 5.4 ×
05 kmol/(kg catalyst s), A1 = 10.55 m3/mol, A2 = 7.54 ×
0−3 m3/mol, E0 = 82220 J/mol, E1 = 5003 J/mol and
2 = 16325 J/mol.

The following hypothesis were adopted for the model devel-
pment [20,22]: (a) negligible pressure variations; (b) reaction
f the type: A(g) + νB(l) → νC(l), occurring at the catalyst and
ith a kinetic that is dependent on the concentrations of A

nd B; (c) no phase change in the system. The operational
arameters of the reactor, mass and energy balance coefficients,
nd physical properties have been considered constant. Some
f these parameters were generated by empirical correlations
22].

The model equations, Eqs. (7)–(27), are differential ones
nd are built-up through the mass and energy balance for
ll substances in all system phases, i.e. in gas, liquid and
dsorbed at the catalyst particles. The model equations are as
ollow:

. Fluid phase:
• Mass balance of reactant A in the gas phase:

εg
∂Ag

∂t
= Deg

L2

∂2Ag

∂z2 − ug

L

∂Ag

∂z
− (Kgl)Aagl(A

∗ − Al)

(7)

Deg

L

∂Ag

∂z

∣∣∣∣
z=0

= ug(Ag − Agfo) (8)

∂Ag

∂z

∣∣∣∣
z=1

= 0 (9)

• Mass balance of reactant A in the liquid phase:

εl
∂Al

∂t
= Del

L2

∂2Al

∂z2 − ul

L

∂Al

∂z
+ (Kgl)Aagl(A

∗ − Al)

− (Kls)Aals(Al − As
s) (10)

Del

L

∂Al

∂z

∣∣∣∣
z=0

= ul(Al − Alfo) (11)

∂Al

∂z

∣∣∣∣
z=1

= 0 (12)

• Mass balance of reactant B in the liquid phase:

εl
∂Bl

∂t
= Del

L2

∂2Bl

∂z2 − ul

L

∂Bl

∂z
− (Kls)Bals(Bl − Bs

s) (13)

Del ∂Bl
∣∣∣
L ∂z ∣
z=0

= ul(Bl − Blfo) (14)

∂Bl

∂z

∣∣∣∣
z=1

= 0 (15) T
m

ing Journal 141 (2008) 250–263

• Energy balance in the fluid phase:

(εgρgCpg + εlρlCpl)
∂T

∂t

= εgλg + εlλl

L2

∂2T

∂z2 − εgρgCpgug + εlρlCplul

L

∂T

∂z

+hsals(T
s
s − T ) − 4U

Dt

(T − Tr) (16)

εgλg + εlλl

L

∂T

∂z

∣∣∣∣
z=0

=(εgρgCpgug+εlρlCplul)(T − Tfo)

(17)

∂T

∂z

∣∣∣∣
z=1

= 0 (18)

. Solid Phase:
• Mass balance of reactant A at the solid phase:

εs
∂As

∂t
= Dea

R2
p

1

r2
p

∂

∂rp

(
r2

p
∂As

∂rp

)
− ρsRW(As, Bs, Ts) (19)

Dea

Rp

∂As

∂rp

∣∣∣∣
rp=1

= (Kls)A(Al − As
s) (20)

∂As

∂rp

∣∣∣∣
rp=0

= 0 (21)

• Mass balance of reactant B at the solid phase:

εs
∂Bs

∂t
= Deb

R2
p

1

r2
p

∂

∂rp

(
r2

p
∂Bs

∂rp

)
− νρsulRW(As, Bs, Ts)

(22)

Deb

Rp

∂Bs

∂rp

∣∣∣∣
rp=1

= (Kls)B(Bl − Bs
s) (23)

∂Bs

∂rp

∣∣∣∣
rp=0

= 0 (24)

• Energy balance for the solid phase:

ρsCps
∂Ts

∂t
= λs

R2
p

1

r2
p

∂

∂rp

(
r2

p
∂Ts

∂rp

)

+ρs(−�HR)RW(As, Bs, Ts) (25)

λs

Rp

∂Ts

∂rp

∣∣∣∣
rp=1

= hs(T − T s
s ) (26)

∂Ts
∣∣∣ = 0 (27)
∂rp
∣
rp=1

he numeric solution of this model was obtained by using the
ethod of lines in conjunction with orthogonal collocation,
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hich showed to be an effective procedure for the space dis-
retization in conjunction with the DASSL algorithm for the
ntegration over time [20].

The open-loop dynamic behavior of multiphase reactors was
bserved by Vasco de Toledo et al. [20]. The reactor is a typical
on-linear distributed parameter system and has its behavior
ven more complex due to mass transfer resistance among
hases. The dynamic behavior of the reactor was observed for
isturbances in the reactant fluid feed temperature, Tfo, and in the
eed temperature of the coolant fluid, Tr .It is observed that the
eactor is very sensitive to changes in Tfo and in Tr. An asymp-
otic dynamic behavior is exhibited by the temperature of the
eactor and an oscillatory behavior by the coolant fluid temper-
ture, which is a typical characteristic of distributed parameter
ystems. The system is very sensitive to changes in Tr due to the
act that this model has a large complexity in the catalyst particle
odel, which generates great sensibility in relation to changes

n the operational parameters. This sensibility of the dynamic
ehavior of the reactor in relation to changes in the coolant fluid
s observed mainly in industrial situations.

In the present work, for the reactor control, the tested manip-
lated variables were the temperature of the coolant fluid, Tr,
nd the reactants feed temperature, Tfo. This is coherent with
he operating strategies of many existing hydrogenation plants
3]. As already mentioned, the controlled variable is the reactor
xit temperature.

. Proposition of control structures

In this work, the performance analysis of different control
trategies (feedback, feedforward and a combination of both
trategies) is made. As mentioned, emphasis is given to relative
asy to implement control structures.

In theory, feedback strategy is a more guaranteed one because
he controller will always take an action if the controlled vari-
ble changes from the set-point value. However, due to process
ynamics, this action can last longer until the process returns to
he set-point.

The feedforward strategy, on the other hand, is able to take
n action earlier in the process, since it measures the perturba-
ion and not the controlled variable. The feedforward strategy,
owever, frequently suffers from several inherent difficulties: it
equires the identification of the disturbance, and a very good
odel of the process. If a non-measured perturbation takes place,

he feedforward controller is unable to take an action. These
equirements lead to difficulties for many systems in the chemi-
al industry, mainly due to the fact that the changes in the process

J = min
�u

φ = 1

2
�uT H�u + cT �u, where H = AT WT WA

subjected to the following operational constraints : ymin ≤
arameters cannot be compensated, unless a reliable estimation
rocedure is incorporated into the model.

In this way, this work proposes to evaluate both isolated struc-
ures and a composition of them for the o-cresol hydrogenation

p
a
t
v
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eactor. The feedback structure makes use of the dynamic matrix
ontrol (DMC). The way the composed weighted action (feed-
ack and feedforward) can be formulated is also analyzed, i.e.,
he best weight for both actions is studied.

In this work, possible model mismatch is not considered in
he evaluation, but this is not a limitation, since a comparison
mong control structures is made with the same model prediction
uality.

.1. Quadratic dynamic matrix control (QDMC)

The feedback strategy is here implemented by the predictive
DMC (quadratic dynamic matrix control), a model predictive

ontrol (MPC) with constraints. The QDMC is based on the
olution of an optimization problem, here based on the method
f successive quadratic programming (SQP) [22–24].

Among the digital controllers, the QDMC was chosen based
n its robustness and flexibility. Some tests with PID have shown
hat a considerable effort need to be done to tune the parame-
ers and this is a drawback for its implementation. Melo et al. [1]
ompared the performance of two advanced controllers (QDMC
nd STQDMC: self tuning quadratic dynamic matrix control) for
he two-layers optimization and feedback control of the o-cresol
ydrogenation reactor and concluded that both controllers pre-
ented good performance. However, STQDMC requires longer
omputational calculation times because of its adaptive mech-
nism. In this way, the QDMC algorithm was preferable in the
tudied case and it was selected for the present study.

The QDMC algorithm predicts the performance of the con-
rolled variables over a prediction horizon, by solving an
ptimization problem using a quadratic programming (QP)
pproach to find out the controller actions in a control horizon
smaller or equal to the prediction horizon)[25]. The predicted
ehavior is calculated using a process model, convolution one,
btained by the standard procedure for dynamic matrix-based
ontrollers. The projected errors, between the desired trajectory
nd the predicted response, are used to determine future control
ctions. Only the first control action is implemented. At the next
ampling instance, the real plant measurement is used to correct
ny plant/model mismatch and the optimization is repeated to
nd out the next optimal control solution.

When criteria of high level complexity are proposed to obtain
he control action, and when constraints are considered in the
ontrolled and manipulated variables, it is necessary to use opti-
ization algorithms, because, in this case, there is no analytical

olution for the control problem. In this work, the controller
erformance criterion is expressed as

T = −E′T WT WA

ymax umin ≤ u ≤ umax, �umin ≤ �u ≤ �umax

(28)

n these equations, W is the weighting factor matrix (com-

osed of adjustable parameters that allow to penalize the control
ctions); A is the dynamic matrix of the system; E

′
is the array

hat stores the differences between past predictions and reference
alues; �u is the array with the incremental of the manipulated
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ariables, y is the controlled variable (with ymax and ymin as min-
mal and maximal values respectively) and u is the manipulated
ariable (with umax and umin as maximum and minimum values,
espectively).

A matrix is the dynamic matrix, generated by the classic
ethod, with the system response to a step, using the convolution

or parametric) model, which linearly relates manipulated and
ontrolled variables. W is the diagonal matrix with the suppres-
ion factors, which are control tuning parameters. Both matrices
ere generated by open-loop simulations [26].
It is important to emphasize that in order to generate the W

nd A matrixes, a dynamic model of the process is required.
his model for the o-cresol hydrogenation reactor is composed
y Eqs. (3)–(27).

It is worthwhile mentioning that this controller, associated
ith optimization algorithm, is able to consider more sophis-

icated control problems. Usually the benefits obtained in this
pproach justify the inherent increase of complexity (compu-
ational efforts for instance) when it is compared to analytical

ethods of solution, since a better performance may be obtained.
MC controllers are relatively easy to be developed and imple-
ented and usually present good results for specific range of

peration.
The use of DMC-based algorithms is also justified since

any companies usually have the controller license available,
lthough sometimes not in use due to the lack of deeper studies
n the controller performance of large-scale systems, including
onitoring difficulties and reliable control strategies evaluation.

.2. Feedforward strategy

The objective of a feedforward controller is basically to gen-
rate anticipated corrective actions to compensate measured
nput disturbances. The idea here is to adopt a different approach
or the control strategy regarding the action of manipulated vari-
ble and the dynamic response. The general concept of classic
eedforward is used to formulate the control strategy. The feed-
orward action is therefore calculated aiming to minimize the
uadratic error, which is a measure of the difference between the
alculated exit reactor temperature and set-point for this process
ariable. This objective function for the feedforward controller
ay be written as in Eq. (29), in which either Tfo or Tr is selected

s manipulated variable:

min
Tfo

((T − Tset point)
2)

s.t. : Tfo min ≤ Tfo ≤ Tfo max

or

min
T r

(T − Tset point)
2

s.t. : Tr min ≤ Tr ≤ Tr max

(29)

oth Tfo and Tr are analyzed as manipulated variable, which
eans that, when Tfo is used as manipulated variable, the first
ptimization problem of Eq. (29) is solved and when Tr is
elected as manipulated variable, the second optimization prob-
em is considered. At Section 5, the use of these two variables
s practically feasible manipulated variables is discussed. It

c

r
d
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s worthwhile mentioning that, for practical implementation,
hanges in the coolant temperature are difficult to be used, since
sually thermal fluids have as characteristic high heat capac-
ty. This means that a large effort, in terms of heat exchanger
esigns and operation, has to be made to change the tempera-
ure of large amount of fluid in a reasonable time interval. This
eature is taken into account in the analysis of results.

The Levenberg–Marquardt algorithm was used to implement
his methodology: it finds out the manipulated variable value,
nowing the desired set-point and the process disturbances.

Since this feedforward strategy does not require a dynamic
odel (no prediction horizon is part of the model), a simplified
odel, calculated for stationary states, can be used. It is expected

hat a simplified model is easier to be implemented and of fast
omputation calculation. In this way, two alternatives were used
n this work for the reactor exit temperature (T) calculation to be
sed in Eq. (29): the detailed deterministic model (Eqs. (3)–(27))
nd a simplified one, generated with use of a statistical tool (fac-
orial design). The application of the factorial design to generate
simplified stationary working model for control purposes is a
ew procedure introduced in this work and that seems to be a
owerful procedure, due to its simplicity and good predictions
apabilities, as illustrated in Section 4.

.3. Evaluated control strategies

This work evaluated five control strategies, to know:

a) Single feedback (FB) – in fact, a DMC controller, as
described in Section 3.1.

b) Single feedforward, coupled with deterministic model
(FF deterministic).

c) Single feedforward, coupled with simplified statistical
model (FF statistical).

d) Combination of feedback and feedforward, with determin-
istic model for both ones (FF deterministic + FB).

e) Combination of feedback and feedforward, with simpli-
fied statistical model for feedforward action calculation
(FF statistical + FB).

The coupling of feedback and feedforward control (strategies
and e above) is made by a weighted action, as depicted in Eq.

30):

u (feedback + feedforward)

= β × u feedforward + (1 − β) × u feedback, 0 ≤ β ≤ 1

(30)

t is expected that the combined action (feedback combined
ith feedforward, Eq. (30)), presents part of the advantages of
oth isolated strategies, and decreases the drawbacks of iso-
ated strategies. Section 5 demonstrates the advantages of such

ombined action.

Two situations exist in which a control system can be
equired. In the first one, called regulatory control problem, the
isturbance, also called load, change in an unexpected way and
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Fig. 2. Schematic diagram of the control strategies.

he control objective is to keep the exit at a desired value (set-
oint). This is a typical problem in many hydrogenation plants
ue to changes in the hydrogen supply with impact in the reactor
ressure and behavior. In the second situation, a change in the
alue of the desired stationary state (set-point) is made and the
bjective of the control is to bring the controlled variable to the
ew stationary state. This situation is called a problem of servo
ontrol.

All five strategies (a–e) are evaluated both in a controller
unctioning as a servo and a regulatory one, which means that
t was evaluated the ability of the controller to maintain (regu-
atory control) or to change the controlled variable to the new
et-point (servo control) in a reasonable action time and to not
ause sharp perturbations in the manipulated variable. In order
o evaluate the performance of these strategies, perturbations
oth in operational variables (which means to cause perturba-
ions inputs to the hydrogenation reactor) and in set-point values
ere introduced. Fig. 2 represents, in a schematic way, the five

trategies studied in this work.

. Development of the simplified statistical model

The development of a simplified model is here made with the
id of the factorial design statistical tool. This tool is useful in the

dentification of the most significant variables (called factors) in
response. The tool also allows the generation of a simplified
odel, valid in the studied range of variables. More details about

actorial designs may be found in Box et al. [27].

n

i
d

able 1
ariables and levels for central composite design

actor Level

−2.38a −1

gfo (kmol/m3) 0.01140 0.01350

lfo (kmol/m3) 0.00838 0.00990

lfo (kmol/m3) 0.18300 0.21600

fo (K) 476.00 513.00

r (K) 381.00 450.00

a ±2.38 = ±(25)1/4 (axial point).
ing Journal 141 (2008) 250–263 257

The aim of this section is to generate a simplified model
or the reactor exit temperature (T) as a function of the feed
ydrogen concentrations in gas and liquid phases (Agfo and
lfo, respectively), o-cresol concentration (Blfo), the reactants

eed temperature (Tfo) and coolant temperature (Tr). In order to
chieve this purpose, the deterministic model (Eqs. (7)–(27)) is
sed as virtual plant that gives the system steady-state responses
o different input values to the reactor. The factorial design is
sed to guide both in which inputs should be supplied to the vir-
ual plant as also in how to compute the input variables influence
n the reactor exit temperature.

For the development of the simplified model, therefore, reac-
or exit temperature (T) is the response and the factors are the
eed hydrogen concentrations in gas and liquid phases (Agfo and
lfo, respectively), o-cresol concentration (Blfo), the reactants

eed temperature (Tfo) and coolant temperature (Tr).
A factorial central composite design, composed by 43 compu-

ational simulations, was made in order to evaluate the influence
f each independent variable on the stationary state reactor exit
emperature and, with this information, to generate the required
implified model. These simulations included 32 (25) factorial
oints, 1 central point and 10 axial points (totalizing 43 runs).
able 1 presents the factor levels used in the factorial design
tudy and Table 2 brings the central composite simulation results
the 43 runs) for the reactor exit temperature at the reached
tationary state.

The software Statistica (Statsoft, v.7) was used to analyze the
esults and to generate a simplified linear model for temperature
s a function of the five studied factors. The choice to generate a
inear model was made because of the simple and useful model
tructure it derives. Table 3 brings the coefficients of this model
ith real (not coded) values for factors.
In this way, the reactor exit temperature at steady-state is

iven by Eq. (31) (units as in Nomenclature section):

= −62.50498 + 355.6215(Agfo) + 3.836649(Alfo)

+143.4759(Blfo) + 0.676911(Tfo) + 0.428379(Tr) (31)

t is worthwhile to mention that Eq. (31) is valid only for the
ariables ranges described by Table 1. However, this does not
ean a limitation of the procedure, since, if a larger range is
ecessary, another model can be easily generated.
The very good quality of the simplified model can be checked

n Fig. 3, in which the reactor exit temperatures predicted by the
eterministic model (Eqs. (3)–(27)) are compared to the values

0 1 2.38a

0.01500 0.01650 0.01860
0.01100 0.01210 0.01360
0.24000 0.26400 0.29700

540.00 567.00 604.00
500.00 550.00 619.00
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Table 2
Central composite design for the steady-state reactor exit temperature as response

Simulation Agfo (kmol/m3) Alfo (kmol/m3) Blfo (kmol/m3) Tfo (K) Tr (K) T (K)

1 0.01350 0.00990 0.21600 513.00 450.00 512.60
2 0.01350 0.00990 0.21600 513.00 550.00 557.08
3 0.01350 0.00990 0.21600 567.00 450.00 550.83
4 0.01350 0.00990 0.21600 567.00 550.00 592.10
5 0.01350 0.00990 0.26400 513.00 450.00 518.72
6 0.01350 0.00990 0.26400 513.00 550.00 563.89
7 0.01350 0.00990 0.26400 567.00 450.00 557.61
8 0.01350 0.00990 0.26400 567.00 550.00 599.19
9 0.01350 0.01210 0.21600 513.00 450.00 512.62

10 0.01350 0.01210 0.21600 513.00 550.00 557.08
11 0.01350 0.01210 0.21600 567.00 450.00 550.84
12 0.01350 0.01210 0.21600 567.00 550.00 592.11
13 0.01350 0.01210 0.26400 513.00 450.00 518.74
14 0.01350 0.01210 0.26400 513.00 550.00 563.90
15 0.01350 0.01210 0.26400 567.00 450.00 557.62
16 0.01350 0.01210 0.26400 567.00 550.00 599.20
17 0.01650 0.00990 0.21600 513.00 450.00 514.18
18 0.01650 0.00990 0.21600 513.00 550.00 557.89
19 0.01650 0.00990 0.21600 567.00 450.00 551.69
20 0.01650 0.00990 0.21600 567.00 550.00 592.49
21 0.01650 0.00990 0.26400 513.00 450.00 520.83
22 0.01650 0.00990 0.26400 513.00 550.00 564.98
23 0.01650 0.00990 0.26400 567.00 450.00 558.78
24 0.01650 0.00990 0.26400 567.00 550.00 599.73
25 0.01650 0.01210 0.21600 513.00 450.00 514.19
26 0.01650 0.01210 0.21600 513.00 550.00 557.89
27 0.01650 0.01210 0.21600 567.00 450.00 551.70
28 0.01650 0.01210 0.21600 567.00 550.00 592.50
29 0.01650 0.01210 0.26400 513.00 450.00 520.84
30 0.01650 0.01210 0.26400 513.00 550.00 564.99
31 0.01650 0.01210 0.26400 567.00 450.00 558.78
32 0.01650 0.01210 0.26400 567.00 550.00 599.73
33 0.01140 0.01100 0.24000 540.00 500.00 556.20
34 0.01860 0.01100 0.24000 540.00 500.00 558.76
35 0.01500 0.00838 0.24000 540.00 500.00 557.91
36 0.01500 0.01360 0.24000 540.00 500.00 557.93
37 0.01500 0.01100 0.18300 540.00 500.00 549.66
38 0.01500 0.01100 0.29700 540.00 500.00 566.20
39 0.01500 0.01100 0.24000 476.00 500.00 512.41
40 0.01500 0.01100 0.24000 604.00 500.00 599.21
41 0.01500 0.01100 0.24000 540.00 381.00 504.08
42 0.01500 0.01100 0.24000 540.00 619.00 606.55
4 0
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a
model is used in control strategies (i.e., in FF statistical and
FF statistical + FB), the manipulated variable is calculated as in
Eqs. (32) and (33).

Table 3
Regression coefficients for steady-state exit temperature

Factor Regression coefficient

Mean (interception) −62.50498
Agfo 355.6215
3 0.01500 0.01100

alculated by the simplified one (Eq. (31)). As it can be observed,
he statistical model may be used without any restriction in the
ange in which it was generated because the predicted values are
ractically the same as the ones obtained with the deterministic
odel.
The ANOVA (analysis of variance) is another way to check

he quality of the model. Table 4 shows that the statistical model
s very representative, since, the F-test, indicates a calculated
alue for F (1032.91) almost 500 times greater than the tabulated
alue for F at 95% confidence level (F0.95;20;22 = 2.07).

The use of the statistical simplified model in the feedfor-

ard strategy is made expressing the manipulated variable

feed reactant temperature, Tfo, or the coolant temperature,
r) as a function of the reactor exit temperature (con-

rolled variable, whose value is defined by the set-point)

A
B
T
T

.24000 540.00 500.00 557.92

nd of the other factors. In this way, when the simplified
lfo 3.836649

lfo 143.4759

fo 0.676911

r 0.428379
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Table 4
Analysis of variance (ANOVA) (R2 = 0.99894)

Source of variation Sum of squares Degrees of freedom Mean square F-Value

Regression 34846.33 20 1742.32 1032.91
Error 37.11 22 1.6868

T 2

T

T

T
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otal 34883.44 4

Tfo as manipulated variable:

fo =

Tset point − (−62.50498 + 355.6215(Agfo)

+ 3.83664(Alfo) + 143.4759(Blfo)

+ 0.428379(Tr))

0.676911
(32)

r as manipulated variable:

r =

Tset point − (−62.50498 + 355.6215(Agfo)

+3.83664(Alfo) + 143.4759(Blfo)

+0.676911(Tfo))

0.428379
(33)

. Results and discussions

.1. Evaluation of weights for weighted (mixed) strategies

The first step for the implementation of the five proposed con-
rol strategies is the analysis of the β weight in Eq. (30) in order
o decide the best value to be used in the mixed strategies. The

ixed strategy with deterministic model being used in the feed-
orward action calculation (FF deterministic + FB) was used for
he evaluation of the best weight value. Five values for β were

ested, to know, 0.1, 0.3, 0.5, 0.7 and 0.9. Since the boundary
alues (0 and 1) represent single feedback and single feedfor-
ard actions, respectively, these values were not included in this

ection.

ig. 3. Comparison between the prediction of steady-state exit reactor temper-
ture for the deterministic and statistical (simplified) models.

5

v
p

F
(

ig. 4. Controlled variable profile for different β values for mixed strategy
FF deterministic + FB) in a servo control.

The decision upon the best β value was made based both
n minimization of errors and on controlled and manipulated
ariable profiles.

.1.1. Servo control

Figs. 4 and 5 bring the reactor exit temperature (controlled

ariable) and coolant fluid temperature (manipulated variable)
rofiles for the mixed strategy for a servo control, in which a

ig. 5. Tr manipulated variable profile for different β values for mixed strategy
FF deterministic + FB) in a servo control.
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Fig. 6. Controlled variable profile for different β values for mixed strategy
(FF deterministic + FB) in a regulatory control.

F
(

5

60 D.N.C. Melo et al. / Chemical Eng

erturbation of −10 K in the original set-point was introduced
t time = 1100 s.

From Fig. 4, both β = 0.9 and 0.7 (values that means a greater
ontribution of the feedforward action than the feedback one)
ive rise to acceptable controlled variable profiles: the controlled
ariable is brought to the new set-point value in reasonable
ction time and without having a significant undershoot. How-
ver, Fig. 5 demonstrates that none of β values causes a smooth
ehavior of the manipulated variable, i.e., high coolant tem-
erature decrease rates are necessary to make the control of
eactor exit temperature when the set-point is decreased by 10 K.
his is an important point of concern, since very large coolant

emperature decrease rates are very difficult to achieve, due to
he high heat capacity of thermal fluids. This would require

ore sophisticated and certainly more expensive heat design
trategies, maybe not fully justified for commodities. Analo-
ous results are observed if reactants feed temperature (Tfo) is
sed as manipulated variables (behavior not shown for the sake
f brevity). Nonetheless, although the decrease rates are also
igh for Tfo, it represents a situation easier to be implemented
n practice.

In order to decide for the best weight for the weighted strategy
or the servo control, the integral of absolute error (IAE) values
or each β value are compared, both for Tfo and Tr as manipulated
ariable. Table 5 shows that the smaller error are obtained for
= 0.7. In this way, for the servo control, β = 0.7 is selected

or the mixed strategy. The comparison among all five control
trategies explained in Section 3.3 are made in Section 5.2 (with
= 0.7 for the mixed strategy for servo control).

.1.2. Regulatory control
Figs. 6 and 7 bring the reactor exit temperature (controlled

ariable) and reactants feed temperature (manipulated variable)
rofiles for the mixed strategy for a regulatory control, in which
tep perturbations of 10% in Agfo, Alfo, Blfo and Tr were intro-
uced at time = 1100 s.

From Fig. 6, β = 0.9 (almost pure feedforward action) is,
ithout doubt, the best weight value, since the controlled vari-

ble is little disturbed from the set-point and the steady-state
s once more faster achieved. Table 6 (IAE table) really indi-
ates that β = 0.9 produces a IAE value much smaller than the
nes for other β values. However, once more the behavior of the

anipulated variable is not smooth for any β (Fig. 7).
In Section 5.2, therefore, all five strategies are com-

ared for the regulatory control with β = 0.9 for the mixed
trategy.

able 5
AE values for servo control for the various β values

eight value (β) IAE value

Manipulated Tfo Manipulated Tr

.1 4050.91 3917.09

.3 3872.72 3759.41

.5 3717.65 3629.90

.7 3661.58 3584.78

.9 3829.54 3745.88

f
F
t
u

T
I

W

0
0
0
0
0

ig. 7. Tfo manipulated variable profile for different β values for mixed strategy
FF deterministic + FB) in a regulatory control.

.2. Evaluation of the control strategies

The performance for the studied strategies (feedback, feed-

orward and mixed feedforward and feedback) is shown in
igs. 8–12. In order to decide for the best strategy in each case,

he used criterion was to observe the changes both in the manip-
lated (Tfo, since implementation of the required changes in Tr

able 6
AE values for regulatory control for the various β values

eight value (β) IAE value

Manipulated Tfo Manipulated Tr

.1 3400.84 4746.41

.3 2641.52 3576.52

.5 2010.38 2527.39

.7 1368.31 1475.12

.9 675.67 280.48
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pure feedforward (calculated by statistic model) strategy (dark
ig. 8. Exit reactor temperature (controlled variable) profile for a 10 K change
n set-point value—SISO servo control.

ould be economically hardly justified) and in the controlled
ariables.

The SISO servo control performance for all five strategies are
hown in Figs. 8 and 9 for both the controlled and manipulated
ariables profiles.

From Fig. 8, the pure feedforward strategy, calculated by
he deterministic model (up triangle mark) seems to be the best
ne, but the challenge is to have a suitable way to implement
rastic changes in the feed reactant temperature, as indicated in
ig. 9: large manipulated variable rates, such as around 0.8 K/s,
re required. This rate in large-scale production units, such as
he studied reactor, in which mass flow rates of 180 tonnes/h
re common, may represent indeed a difficult job. In Fig. 9,

he only strategy that presents smoother changes in the manip-
lated variable is the pure feedback strategy. However, the time
emanded by this controller to bring the process to the new set-

ig. 9. Reactant feed temperature (manipulated variable) profile for a 10 K
hange in set-point value—SISO servo control.

d
i
t

F
d

ig. 10. Exit reactor temperature (controlled variable) profile for a 5% step
isturbance in Tr—SISO regulatory control.

oint (Fig. 8) is unacceptable, given the characteristic high mass
ow rates.

It has to be born in mind that the successful implementa-
ion of the pure feedforward strategy demands an excessive care
n maintaining all the others variables in a strict control. This
oints out that, for the implementation in large-scale systems,
n which it is not expected to have the state variables fully mea-
ured, it is more convenient and even safer to adopt strategies
ith feedback information. In this sense, the weighted feed-
ack and feedforward (calculated by statistical model) strategy
star mark) appears to be suitable for practical implementation
ecause, although a larger overshoot occurs, the decaying time
s quite acceptable when compared to the offset presented by the
own triangle mark). Such offset may be due to the model lim-
tations in predicting the process behavior, when compared to
he detailed deterministic model. The feedback action in the sta-

ig. 11. Reactant feed temperature (manipulated variable) profile for a 5% step
isturbance in Tr—SISO regulatory control.
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ig. 12. Exit o-cresol concentration in the liquid phase profile for a 5% step
isturbance in Tr—SISO regulatory control.

istical weighted feedback and feedforward strategy is able to
liminate such offset.

An important point to be considered is the computational
ime. Extensive simulations indicate that, while the determinis-
ic approach takes around 6 min (in an AMD 2.08GHz 768MB
AM computer) to complete the full calculations, the weighted
pproach, calculated with statistical model (star mark), takes
nly few seconds.

Bearing all this consideration in mind, the weighted
pproach, calculated with statistical model (star mark), appears
o have the largest potential to be implemented in large-scale
ystems, which is not expected to be fully monitored.

For the SISO regulatory control (Figs. 10–12), the pure feed-
ack strategy is of poor performance (large overshoot and large
ime demanded to bring the process back to the set-point, which

ay hamper the efficient and safe operation of the reactor). The
trategies based on statistical model cause offset. In this way,
he statistical model could not bring considerable benefits for
he regulatory control problem.

In reality, almost all strategies present overshoot, but the
eterministic pure feedforward (up triangle mark) and the deter-
inistic weighted (rhombus mark) strategies seem to be very

uitable, due to the small presented overshoots and to the small
ime required for bringing back the system to the set-point.
owever, due to the already mentioned need to adopt strategies
ith feedback information, the deterministic weighted (rhom-
us mark) strategy is selected as the best one for the SISO
egulatory control considered in this work. Once more, due
o the large manipulated variable rates, a specific design for
he heat exchange for the feed reactant temperature (Tfo) is
equired.

In order to illustrate the impact of the suggested strategies
n the o-cresol conversion, the profile of o-cresol concentration

t liquid phase at the reactor exit is presented in Fig. 12. It is
traightforward to check the good quality of the deterministic
eighted strategy in fast bringing back this outlet concentration

o the original one (original steady-state).
ing Journal 141 (2008) 250–263

. Conclusions

In this work, the use of easy to implement control structures
s considered for the control of a three-phase catalytic reac-
or, where the hydrogenation of o-cresol occurs. The process
s non-linear, has large-scale production rates and possesses a

odel of high dimension. Since online concentration measure-
ents are difficult to obtain, the thermal control of the reactor is
ade. The feedback considered action is based on the dynamic
atrix control and feedforward actions are calculated both with

eterministic and simplified statistical models. Weighted actions
coupling feedback and feedforward actions) are analyzed and
he best weights for both servo and regulatory controls show a
reater contribution of feedforward action.

Coolant temperature does not seem to be an economically
ully justified manipulated variable for this process control, due
o the large decrease rates demanded for the exit reactor tempera-
ure control, when set-point and load disturbances are present. In
his way, feed reactant temperature was selected as manipulated
ariable, with the remaining challenge to have a suitable way to
ccomplish drastic changes in the feed reactant temperature.

The results showed that it was possible to evaluate different
ontrol strategies for the solution of the multiphase reactor con-
rol. The mixed configuration (feedforward + feedback) appears
o have a great potential since good control performance was
btained. In regard to simplified statistical model, it significantly
educed the calculation of control actions, but its use led to offset.
owever, the combination of feedback action with the statistical

eedforward action in the servo control eliminated this offset.
In conclusion the mixed strategies, combining feedback and

eedforward actions, showed to be the best ones for the reg-
latory and servo control problems. The deterministic model
hould be used both for feedback and feedforward actions cal-
ulations in the regulatory problem, but the statistical model
hould be conveniently used for feedforward calculations in the
ixed strategies for the servo control problem.
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